optik fizik örnekleri / Optik - Vikipedi

Optik Fizik Örnekleri

optik fizik örnekleri

Optik

Optik, ışık hareketlerini, özelliklerini, ışığın diğer maddelerle etkileşimini inceleyen; fiziğin ışığın ölçümünü ve sınıflandırması ile uğraşan bir alt dalı.[1] Optik, genellikle gözle görülebilen ışık dalgalarının ve gözle görülemeyen morötesi ve kızılötesi ışık dalgalarının hareketini inceler. Çünkü ışık bir elektromanyetik dalgadır ve diğer elektromanyetik dalga türleri (X-ray, mikrodalga, radyo dalgaları gibi) ile benzer özellikler gösterir.[1]

Çoğu optik olay ışığın klasik elektromanyetizma tanımı ile açıklanabilmektedir. Işığın elektromanyetik tanımlarını tam anlamıyla pratikte kullanmak zordur. Pratik (uygulanabilir) optikte genelde basitleştirilmiş modeller kullanılır. Bu modellerin en yaygını olan geometrik optik; ışığı bir demet olarak ele alır ve ışığı yüzeylerden yansırken, geçerken bükülen bir çizgi varsayar. Fiziksel optik ise ışığın daha kapsamlı bir modelidir. Geometrik optikle açıklanamayan dalga, kırınım, girişim olaylarını barındırır. Tarihsel olarak ışığın demet temelli modeli dalga modelinden önce geliştirilmiştir. yüzyıldaelektromanyetik teorideki gelişim ışık dalgalarının aslında elektromanyetik dalga olduğunu göstermiştir.

Bazı optik fenomenleridalga parçacık ikiliğini ortaya çıkarır. Bu etkiler kuantum mekaniği ile açıklanır. Işığın parçacık modeli söz konusu olduğunda ışık foton adı verilen parçacıkların birleşimi olarak modellenir. Kuantum optiği, kuantum mekaniğini optik sistemlerine uyarlar.

Bir bilim ve fizik dalı olarak optik, astronomi, mühendislik, fotoğrafçılık ve tıp (ağırlıklı olarak oftalmoloji ve optometri) gibi bilim dallarıyla ilintilidir ve bu dallarla birlikte çalışır. Optiğin günlük hayatımızda ve teknolojide çok fazla kullanım alanı vardır. Örneğin; ayna, mercek, teleskop, mikroskop, lazer, fiberoptik gibi günlük eşyaların yapımında ve kullanımında optik bilimi yardımcı olur

Tarihçe[değiştir kaynağı değiştir]

Ana madde: Optik tarihi

Optiğin tarihi Antik Mısır ve Mezopotamya uygarlıklarının merceği geliştirmesiyle başlar. Bilinen ilk mercekler, M.Ö. 'lerde Asurlular tarafından cilalı kristalden ya da genellikle kuartz, yapılmıştır. Layard/Nimrud Merceği bunun bir örneğidir.[2][3]Antik Romalılar, cam kürelere su doldurup mercek olarak kullanmışlardır. Optik alanında gelişmeler, ışık hakkındaki genel teoriler ile Yunan ve Hint filozofların geliştirdiği görme kuramlarını beraberinde getirdi. Bu ilerlemeler, Greko-Romen kültüründe geometrik optiğin gelişimini sağladı. "Optik" sözcüğü Yunanca görünüş, görünüm anlamına gelen "ὀπτική" sözcüğünden türemiştir.[3]

Yunan felsefesi görme eyleminin nasıl gerçekleştiği konusunda iki teoriye ayrılmıştır; emisyon (yayılma) ve içe giriş teorisi.[4] İçe giriş teorisine göre nesnelerden nesnenin kopyaları (eidola) göze gelir ve kopya göz tarafından yakalanınca görme eylemi gerçekleşir. Demokritos, Epikür, Aristoteles ve öğrencilerinin de desteklediği bu teori modern görme teorileriyle ortak yanlara sahip olsa da ortaya atıldığı dönemde hiçbir deneysel çıkarıma dayanmamaktaydı.

Platon, ilk olarak yayılma teorisinde görme olayını; maddelerden yayılan ışınların göz tarafından soğurulması olarak açıklamıştır. Platon aynı zamanda Timaeus'da aynaların dönüşüm çarpanına değinmiştir.[5] Birkaç yüzyıl sonra ÖklidOptik tezi yazdı. Bu tezinde görme olayını geometriyle birleştirdi ve "Geometrik Optiki geliştirdi.[6] Her ne kadar gözden çıkan ışının her göz kırpmada gözde parlamalara sebep olması gerektiğini sorgulasa da Öklid bu çalışmasını Platon'un perspektifin matematiksel kurallarını ve kırılımın etkilerini nitel olarak açıkladığı yayılım teorisini baz alarak yaptı.[7]Batlamyus, Optik tezinde içe-dışa yayma teorisini düzenledi: gözden gelen ışınlar (ya da akı) koni şeklini alır, tepesi göze girer ve taban görüş alanını belirtir. Işınlar hassastı, gözlemcinin beynine mesafe ve yüzeyin yönü hakkında bilgi iletiyordu. Aslında Öklid'i özetlemiştir ve ışınla geliş açısı arasındaki ampirik ilişkiyi farkedememiş, kırılma açısını ölçmek için yöntem aramıştır.[8]

Orta Çağ'da Yunanların optik hakkındaki görüşleri Müslüman dünyası bilim adamları tarafından yeniden gündeme getirilip, geliştirildi. Bu bilim adamlarının öncülerinden olan Kindi, Aristotesyen ve Öklidyen optiğin yararlarını yazmış, optik fenomeni daha iyi açıkladığını düşündüğü için yayılım teorisini benimsemiştir.[9] yılında İranlı matematikçi Ibn Sahl, "Yanan (Parlayan) aynalar ve mercekler" üzerine bir tez yazdı. Şimdiki adıyla Snell yasası'nı yani ışığın kırılımını açıklamıştır.[10] Ve bu yasayı merceklerin ve küresel aynaların optimum eğriliğini hesaplamak için kullandı. yüzyılın başlarında, İbn-i HeysemOptik Kitabı'nı (Kitab al-manazir) yazdı. Bu kitapta yansıma ve kırılmayı açıkladı. Aynı kitapta görme olayını ve ışığı açıklamak için gözlem ve deneye dayalı yeni bir sistem önerdi.[11][12][13][14][15] Batlamyus'un ışınların gözden emildiğini söyleyen optik yayılma teorisini reddetti. Bunun yerine ışığın tüm yönlerden, düz çizgiler halinde gözlenen nesnenin her noktasından yansıyıp göze girdiğini öne sürdü. Fakat gözün ışınları nasıl yakaladığını açıklayamadı.[16] İbn-i Heysem'in çalışması Arap dünyasında görmezden gelinse de yılında anonim bir yazar tarafından Latince'ye çevrildi. Daha sonra Polonyalı Witelo adlı bir keşiş tarafından özetlendi ve genişletildi. Bu metin yıl boyunca Avrupa'da optik üzerine literatür kitap olarak kullanıldı.[17]

yüzyıl Ortaçağ Avrupası'nda İngiliz piskopos Robert Grosseteste, ışıkla ilgili bilimsel konuları Aristo'nun ve Platon'un çalışmalarından yola çıkarak geniş bir şekilde, 4 farklı perspektifle ele aldı: epistemolojik, metafiziksel veya kozmogoniksel, etiyolojik veya fiziksel ve teolojik.[18] Grosseteste'nin en tanınmış öğrencisi, Roger Bacon; İbn-i Heysem, Aristo, İbn-i Sina, İbn Rüşd, Öklid, Kindi, Batlamyus, Tideus, Constantinus Africanus gibi bilim insanlarının yakın zamanda çevrilmiş optik ve felsefe konulu eserlerinden alıntılar ile bir çalışma yaptı. Bacon cam küre parçalarını büyüteç gibi kullanarak ışığın nesnelerden kaynaklanmadığını, nesnelerden yansıdığını ortaya koydu.

İlk takılabilir gözlük yılı civarında İtalya'da icat edildi.[19] Bu icat mercekleri bileyerek ve cilalayarak gözlük yapılmasını sağlayan optik endüstrisinin başlangıcıydı. İlk olarak Venedik ve Floransa'da yüzyılda başlamış[20] daha sonra Hollanda ve Almanya'da da gözlük merceği yapım atölyeleri açılmıştır.[21] Gözlük yapımcıları görüşü düzeltmek için zamanın optik teorisinden (merceklerin nasıl çalıştığını açıklayamıyordu) edindikleri bilgilerle değil merceklerin etkilerini inceleyerek öğrendikleri bilgilerle farklı mercek tipleri geliştirdiler.[22][23] Mercek alanındaki gelişmeler, ustalaşma ve deneyler; 'te bileşik ışık mikroskobunun, 'de refrakter teleskopun Hollanda'daki mercek atölyelerinde icat edilmesini sağladı.[24][25]

yüzyılın başlarında Johannes Kepler geometrik optikte ilerleme kaydetmiştir. Kepler mercekleri, düz ve küresel aynalarda yansımayı, iğne deliği kameranın çalışma prensibini, ışığın yoğunluğunun ters kare yasası ile ilişkisini, Ay ve Güneş tutulmasını, ıraklık açısını açıklamıştır. Aynı zamanda retinanın görüntüleri kaydetme rolü olduğunu anlamış ve mercek yapımcılarının yıllık gözlemlerinin ardından değişik mercek çeşitlerinin etkileri bilimsel olarak ölçülmüştür.[26] Teleskobun icadından sonra Kepler; teleskobun çalışma prensibinin teorik temellerini oluşturmuş; teleskoplar için Kepler teleskobu olarak bilinen ve büyütmeyi arttırmak için iki dışbükey mercek kullanan daha iyi bir yöntem geliştirmiştir.[27]

Newton'un kitabı Opticks'in ilk baskısının () kapağı

Optik teori yüzyılın ortalarında René Descartes'ın The World adlı eserinde bulunan tezlerle ilerleme kaydetti. Bu tezlerde yansıma ve kırılma,ışığın onu üreten nesneler tarafından emildiği varsayılarak, açıklandı.[28] Bu antik Yunan yayılma teorisinden çok farklıydı. 'ların sonlarına doğru, Newton Descartes'in fikrini Işığın Tanecik Kuramı'na dönüştürdü. Bu kurama göre beyaz ışık bir prizma aracılığıyla içeriğindeki renklere ayrılabilen birçok rengin karışımıydı. 'da Christiaan Huygens, 'te Robert Hooke tarafından yapılan çıkarımlara dayanarak dalga teorisini önerdi. Hooke, Newton'ın ışık teorilerini halka açık bir şekilde eleştirdi. İkisi arasındaki anlaşmazlık Hooke'un ölümüne kadar sürdü. yılında Newton, Opticks'i yayınladı. Fiziğin diğer alanlarındaki başarısı sebebiyle yaşadığı dönemde ışığın doğası tartışmasının galibi olarak düşünülüyordu.[28]

Newtonyen optik yüzyılın başlarına kadar kabul gördü ta ki Thomas Young ve Augustin-Jean Fresnel'in girişim deneyleri ile ışığın dalga modelini yayınlamasına kadar. Young'ın meşhur çift yarık deneyi ışığın süperpozisyon ilkesine uyduğunu gösterdi. Bu durum Newton'ın parçacık teorisinde öngörülmemişti. Bu çalışma ışığın kırınım teorisine yönlendirdi ve fiziksel optikte yeni bir çalışma alanı yarattı.[29] 'larda dalga optiği James Clerk Maxwell tarafından elektromanyetik teori ile başarıyla birleştirildi.[30]

Optik teorideki bir sonraki gelişme Max Planck'ın siyah cisim ışımasını doğru olarak modellemesi oldu. Bu modelde Planck madde ile ışık arasındaki enerji değişimlerinin sadece kuanta adını verdiği belirli enerji düzeylerinde gerçekleşebildiği varsaydı.[31][32] 'te Albert Einstein kuantizasyonun ışığın kendisinden kaynaklandığını açıklayan fotoelektrik etki teorisini yayınladı.[33][34] 'te Niels Bohr atomların sadece belirli ve kesikli enerji düzeylerinde enerji yayıldığını gösterdi. Bu keşif emisyon ve absorpsiyon spektroskopisindeki kesikli çizgileri açıkladı.[35] Işık ve madde arasındaki etkileşimin anlaşılması kuantum optiğinin temelini atmasının yanı sıra kuantum mekaniğinin bir bütün olarak geliştirilmesinde önemli bir rol oynadı. Sonuç olarak; kuantum elektrodinamiği tüm optik ve elektromanyetik süreci sanal ve gerçek fotonların değişimi olarak açıkladı.[36]

Kuantum optiği 'te maserin, 'ta lazerin icadıyla günlük hayatta kullanım bakımından önem kazandı.[37]Paul Dirac'ın kuantum alan kuramı üzerine çalışması ve George Sudarshan, Roy J. Glauber, Leonard Mandel'in katkıları ve 'larda fotodedektör, istatistiksel mekanik alanlarında daha fazla bilgi edinmek için kuantum teorisinin elektromanyetik alana uygulanmasını sağladı.

Klasik optik[değiştir kaynağı değiştir]

yüzyılda popüler oldu. Optik bilimi ve mühendislik alanlarında kullanılmakta. Bu alanda optik biliminin elektromanyetik ya da ışık kuantumu ile ilgilidir ama diğer konularda dahil edilebilir. Modern optiğin önemli bir alt dalı olan kuantum optiği özellikle ışık kuantumunun mekanik özellikleri ile ilgilenir. Kuantum optiği sadece teorik değildir; lazer gibi bazı modern cihazların kuantum mekaniğine bağlı çalışma prensipleri vardır. Photomultipliers ve channeltron gibi ışık dedektörleri bireysel fotonlara yanıt verir. CCDs gibi elektronik görüntü sensörleri bireysel foton çekim olaylarının görüntü istatisliklerini sergiler. Çok Işık yayan diyotlar ve fotovoltaik hücreler, kuantum mekaniği olmadan anlaşılamaz. Bu cihazların çalışması kuantum optiğinden genellikle kuantum elektroniği ile örtüşmektedir.

Özel optik araştırma alanları ışığın kristal optik ve metamaterials gibi özel malzemeler ile nasıl etkileşimde bulunduğu hakkında çalışmalar içerir. Diğer araştırmalar, tekil optik, görüntüleme olmayan optik, doğrusal olmayan optik, istatistiksel optik ve radyometri gibi elektromanyetik dalgaların fenomenolojine odaklanır. Bu gün saf bilim optiğine optik bilimi veya optik fiziğini optik mühendisliğinden ayırt etmek gerekir bunlara optik bilimleri denir. Tanınmış alt başlıklarla optik mühendisliği; lens tasarımı, imalat ve test optik bileşenleri ve görüntü işleme gibi pratik uygulamalar ile aydınlatma mühendisliği, fotonik ve optoelektronik içerir.

Kaynakça[değiştir

Fiziğin Alt Dalları Nelerdir? &#;rnekler İle Kısaca Fiziğin Alt Dalları

Haberin Devamı

Fiziğin Örnekler ile Kısaca Fiziğin Alt Dalları

Fiziğin alt dallarını daha iyi anlayabilmek için ayrı ayrı her biri adına kısaca örnekler vermek mümkün. Bu örnekler doğrultusunda ne gibi amaçlar taşıdığı ve ne olduğuna da dair daha etkin bilgi elde edilebilir.

Mekanik; Uçağın uçması, sesin oluşumu, yanardağın patlaması ve rüzgarın oluşumu gibi birçok unsuru açıklayan alt bilim dalıdır.

Elektromanyetizma; Trenler, pusulalar, Manyetik rezonans görüntüleme (MR) gibi birçok cihaz bu alt dal adına örnek olarak verilebilir.

Termodinamik; Isıtma ve soğutma sistemleri, yalıtım malzemeleri, termik santraller ile besinlerden enerji üretimi termodinamik örneği için öne çıkıyor.

Optik; Teleskoplar, gözlükler, fiber optik kablolar ve dürbün gibi birçok cihaz optik alt dalına giriyor.

Atom ve molekül fiziği; Maddenin en küçük yapı taşı atom ile beraber molekülleri inceleme dalı olarak değerlendirilir.

Katıhal fiziği; Maddenin teknolojik alanda kullanımı şeklinde örnek vermek mümkün.

Yüksek enerji ve plazma fiziği; Maddenin katı sıvı ve gaz halinin dışında 4. hali olan plazma haline incelemektedir.

Nükleer fizik; Çekirdek fiziği olarak da bilinir ve enerji üretmek amaçlı dünyada oldukça önemli bir potansiyele sahiptir. 

nest...

çamaşır makinesi ses çıkarması topuz modelleri kapalı huawei hoparlör cızırtı hususi otomobil fiat doblo kurbağalıdere parkı ecele sitem melih gokcek jelibon 9 sınıf 2 dönem 2 yazılı almanca 150 rakı fiyatı 2020 parkour 2d en iyi uçlu kalem markası hangisi doğduğun gün ayın görüntüsü hey ram vasundhara das istanbul anadolu 20 icra dairesi iletişim silifke anamur otobüs grinin 50 tonu türkçe altyazılı bir peri masalı 6. bölüm izle sarayönü imsakiye hamile birinin ruyada bebek emzirdigini gormek eşkiya dünyaya hükümdar olmaz 29 bölüm atv emirgan sahili bordo bereli vs sat akbulut inşaat pendik satılık daire atlas park avm mağazalar bursa erenler hava durumu galleria avm kuaför bandırma edirne arası kaç km prof dr ali akyüz kimdir venom zehirli öfke türkçe dublaj izle 2018 indir a101 cafex kahve beyazlatıcı rize 3 asliye hukuk mahkemesi münazara hakkında bilgi 120 milyon doz diyanet mahrem açıklaması honda cr v modifiye aksesuarları ören örtur evleri iyi akşamlar elle abiye ayakkabı ekmek paparası nasıl yapılır tekirdağ çerkezköy 3 zırhlı tugay dört elle sarılmak anlamı sarayhan çiftehan otel bolu ocakbaşı iletişim kumaş ne ile yapışır başak kar maydonoz destesiyem mp3 indir eklips 3 in 1 fırça seti prof cüneyt özek istanbul kütahya yol güzergahı aski memnu soundtrack selçuk psikoloji taban puanları senfonilerle ilahiler adana mut otobüs gülben ergen hürrem rüyada sakız görmek diyanet pupui petek dinçöz mat ruj tenvin harfleri istanbul kocaeli haritası kolay starbucks kurabiyesi 10 sınıf polinom test pdf arçelik tezgah üstü su arıtma cihazı fiyatları şafi mezhebi cuma namazı nasıl kılınır ruhsal bozukluk için dua pvc iç kapı fiyatları işcep kartsız para çekme vga scart çevirici duyarsızlık sözleri samsung whatsapp konuşarak yazma palio şanzıman arızası